User interface CurrentVIEW

The user interface **CurrentVIEW** is easy to use and self-explanatory. It allows:

- + single and continuous measurements
- + visualization in 2D, 3D and as values
- + saving data as text files in spreadsheet format
- + saving data as pictures in jpg format
- + saving and reviewing of data streams.

Also a dll can be introduced into an existing environment.

Specifications

general data				
current measurement	01.25A/(measurement cell) or			
range	02.5A/cm ²			
resolution of current	0.01A			
measurement				
measurement time for	0.5 seconds for 100 measurement cells			
current	with one channel			
temperature measure- ment	optional			
measurement time for	2 seconds for 100 measurement cells			
temperature	with one channel			
position of measure- ment	at an arbitrary position in a stack up to 60V (higher optional) or single cells			
sensor plate				
segments	gold plated			
size of measurement cell	7 x 7mm (0.5cm ²)			
thickness	approximately 3.5mm			
maximum current	3A per measurement cell			
maximum operating	100°C			
temperature of sensor	180°C optional			
plate				
- la stra a la				
				<i></i>
available configura-	rows	columns	channels	active area
tions of the electronic	23	23	1	160 x 160mm
up to maximal.	48	24	3	<u>336 x 168mm</u>
	48	48	6	336 x 336mm
interface	USB-Interface			
auxiliary power supply	AC Input 100-240VAC, 50-60Hz, 0.4A			
operating environment	0-40°C, humidity: no condensation			
software	User interface and device drivers for Windows 2000 and Windows XP			

Contact:

S++ Simulation Services Gräfin-Justitia-Straße 2 82544 Egling/Thanning Germany

Telephone:	+49-(0)8176/998396-0
Telefax:	+49-(0)8176/998396-3
E-mail:	info@splusplus.com
Web:	www.splusplus.com

current scan lin

Current density distribution and temperature distribution measurement in fuel cell stacks.

- + standard devices are available
- + special designs on request

With the **current scan lin**, the current density distribution can be measured with a high resolution and it offers a linear complexity. So it is also applicable in large fuel cells. It is connected via USB to any computer and easy to use.

In a fuel cell the local conditions differ, which leads to an inhomogeneous mass conversion resulting in an inhomogeneous current production. One of the keys to a deeper understanding of PEM fuel cells, DMFC and other electrochemical cells, is the measurement of the current density distribution. In large fuel cells this is important for a save and reliable operation as well as a high lifetime. Up to now the high complexity was a major problem.

Application

The device of type current scan lin shown on the first page has a resolution of 17 x 19 measurement cells and an active area of 150cm². It will be placed between the two half's of a bipolar plate at an arbitrary place in the stack. The pictures below show a typical current distribution and a temperature distribution.

Measurement Principle

The permeability of a magnetic material is dependend on the magnetization and the temperature. The current I_m , which has to be measured, flows

through the coil L₁ and causes a magnetization of the magnetic material (dashed line). An alternating current

i(t), feed into L₂, induces a voltage u(t) into the coil

L₃. This voltage depends upon the permeability of the magnetic material (dashed line). So it depends upon the current I_m.

Single measurement cells are conducted in series, in rows and columns. This is shown in the following picture for example at 3 x 3 measurement cells.

The alternating currents i1(t) to in(t) will be

to

as measurement signals. The measurement cells, which are not activated by an alternating current, deliver nothing to the measurement signal. In general n² measurement points can be reached with 2 n wire pairs. So the complexity for connection wires, control and evaluation electronics is linear! This way, measurement devices for arbitrary large fuel cells can be built easily.

Available standard devices

The picture shows the standard devices Test25.

Test50 and Test100 complete with 25cm², 50cm² and 100cm² single cell fuel cell and resistors to heat up the fuel cells.

Also available is the shown universal design. Outside the active area with measurement cells and a

restricted area for the conductor paths, arbitrary holes may be drilled. Different electronics (picture beside) which are able to drive up to 48 rows and 48 columns are available. They also differ in the number of independent input channels. influencing the speed.

Custom made devices

The above picture (by courtesy of Helion) shows a custom made sensor plate with an active area of 800cm² and 46 x 36 measurement cells.

Nearly any design is possible. The minimal size of the measurement cells is 7 x 7mm. The maximal size is restricted by the current they can measure and should not be larger than 7 x 7 mm.